staff:boekler
Table of Contents
Dr. Fritz Bökler
Office hours | Wed 10:00 - 12:00 |
fboekler@uos.de | |
Phone | +49 (0)541/969-3567 |
Fax | +49 (0)541/969-2799 |
Room | 50/508 |
ORCiD | 0000-0002-7950-6965 |
Research Interests
- (Multi-objective) combinatorial optimization, especially graph problems
- Multi-objective linear programming
- Algorithm Engineering
- Computational Geometry
- Integer programming methods
- Graph theory, graph algorithms
- Computational complexity
Publications
Refereed Conference Articles
- PaMILO: A Solver for Multi-Objective Mixed Integer Linear Optimization and Beyond (arXiv)
Fritz Bökler, Levin Nemesch, Mirko H. Wagner
OR 2022, Springer, 2023. - An Experimental Study of ILP Formulations for the Longest Induced Path Problem (arXiv)
Fritz Bökler, Markus Chimani, Mirko H. Wagner, and Tilo Wiedera,
ISCO 2020, Springer Lecture Notes in Computer Science 12176, pp. 89–101, 2020. - Approximating Multiobjective Shortest Path in Practice
Fritz Bökler and Markus Chimani,
ALENEX 2020, ACM-SIAM Proceedings, pp. 120–133, 2020. - Tree-Deletion Pruning in Label-Correcting Algorithms for the Multiobjective Shortest Path Problem
Fritz Bökler and Petra Mutzel,
WALCOM 2017, Springer, Lecture Notes in Computer Science 10167, pp. 190–203, 2017. - The Multiobjective Shortest Path Problem Is NP-Hard, or Is It?
Fritz Bökler,
EMO 2017, Springer, Lecture Notes in Computer Science 10173, pp. 77–87, 2017. - Output-Sensitive Algorithms for Enumerating the Extreme Nondominated Points of Multiobjective Combinatorial Optimization Problems
Fritz Bökler and Petra Mutzel,
Algorithms – ESA 2015, Springer, Lecture Notes in Computer Science 9294, pp. 288–299, 2015. - The Stochastic Steiner Tree Problem on Partial k-Trees
Fritz Bökler, Petra Mutzel, and Bernd Zey,
Proceedings of the Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS) 2012, NOVPRESS Brno, October 2012.
Refereed Journal Articles
- The Complexity of the Multiobjective Spanner Problem (arXiv)
Fritz Bökler and Henning Jasper
Mathematical Methods of Operations Research 2024 (accepted). - An outer approximation algorithm for multiobjective mixed-integer linear programming (arXiv)
Fritz Bökler, Sophie N. Parragh, Markus Sinnl, Fabien Tricoire
Mathematical Methods of Operations Research 2024 (accepted). - On the Rectangular Knapsack Problem
Fritz Bökler, Markus Chimani, Mirko H. Wagner,
Mathematical Methods of Operations Research 96, 2022. - Multi-Objective Optimisation based Planning of Power-Line Grid Expansions
Daniel Bachmann, Fritz Bökler, Jakob Kopec, Kira Popp, Björn Schwarze, Frank Weichert,
International Journal of Geo-Information 7(7), 2018. - Output-sensitive Complexity of Multiobjective Combinatorial Optimization (arXiv)
Fritz Bökler, Matthias Ehrgott, Christopher Morris, Petra Mutzel,
Journal of Multicriteria Decision Analysis 24(1–2), pp. 25–36, 2017.
Other Publications
- The Output-sensitive Complexity of the BUCO Problem
Fritz Bökler, Matthias Ehrgott, José Rui Figueira, Andreia P. Guerreiro, Kathrin Klamroth, Britta Schulze, and Daniel Vanderpooten,
Dagstuhl Reports, June 2020. - Konfliktarme Trassenverläufe
Frank Weichert, Daniel Bachmann, Fritz Bökler, Jakob Kopec, Kira Popp, and Björn Schwarze,
arcAktuell 4/2015, 2015. - Transparente Identifizierung und Bewertung von Höchstspannungstrassen mittels mehrkriterieller Optimierung
Daniel Bachmann, Fritz Bökler, Mike Dokter, Jakob Kopec, Björn Schwarze, and Frank Weichert,
Energiewirtschaftliche Tagesfragen, September 2015.
Theses
- Output-sensitive Complexity of Multiobjective Combinatorial Optimization Problems with an Application to the Multiobjective Shortest Path Problem
Fritz Bökler,
Dissertation (PhD thesis), TU Dortmund, April 2018. - TR12-02: Algorithmen für das Stochastische Steinerbaumproblem auf Serien-Parallelen Graphen
Fritz Bökler,
Diplomarbeit (Master's thesis), TU Dortmund, April 2012.
Awards
- 2019 Doctoral Dissertation Award of the international MCDM Society
Software
- PaMILO: A solver for parametric mixed-integer optimization
Former Research Projects
- BMWI Projekt: Stromnetzplanung
This interdisciplinary research and development project has the aim to investigate sustainable methods of evaluating and analyzing network topologies and power grid lines. A special focus will be made on multi-objective tools and optimization.
Teaching/Lehre
Summer 2024
- Lecture: Complexity Theory
- Seminar: Algorithmic Concepts
Winter 2023/24
- Lecture: Introduction to Programming
Summer 2023
- Lecture: Algorithmic Multiobjective Optimization
- Seminar: Algorithmic Concepts
Winter 2022/23
- Excercises: Algorithms II
Summer 2022
- Lecture: Algorithmic Multiobjective Optimization
Winter 2021/22
- Practice Project: S.P.A.N.N.E.R.S. – A project about integrating OGDF into Quantum GIS and experimental evaluation of algorithms for the spanner problem
Summer 2021
- Practice Project: S.P.A.N.N.E.R.S.
Winter 2020/21
- Exercises: Algorithms II
Summer 2020
- Lecture: Algorithmic Multiobjective Optimization
Winter 2019/20
- Lecture: Approximation Algorithms
- Seminar: Algorithmic Concepts
Summer 2019
- Lecture: Algorithmic Multiobjective Optimization
Winter 2018/19
- Practice Project: McGyver – Visualizing Algorithms for Multiobjective Graph Problems
Summer 2018
- Practice Project: McGyver
Supervised Bachelor/Master-Theses
- TriPoD: Engineering the First Polynomial Delay Solver for Tri-Objective Linear Programming
Levin Nemesch, Master's Thesis, Osnabrück Universtiy, 2023. - Speeding Things Up: Parallel Algorithms for the Spanner Problem
Tim Hartmann, Master's Thesis, Osnabrück University, 2022. - Complexity of the Multiobjective Spanner Problem
Henning Jasper, Bachelor's Thesis, Osnabrück University, 2021. - An Experimental Study of ILP Formulations for the Longest Induced Path Problem
Mirko H. Wagner, Bachelor's Thesis, Osnabrück University, 2020. - Performance Differences between Label Setting and Correcting Algorithms in Multi-Objective Shortest Path Problems
Levin Nemesch, Bachelor's Thesis, Osnabrück University, 2020. - Methoden zur Lösung des Mehrkriteriellen Kürzeste-Wege-Problems im Überblick
Maximilian Trögel, Bachelor’s Thesis, TU Dortmund, 2017. - Optimale Schrittweiten für einen Bikriteriellen Evolutionären Algorithmus mit S-Metrik-Selektion
Rosa Pink, Bachelor’s Thesis, TU Dortmund with Günter Rudolph, 2016. - Vergleich von Algorithmen zum Bestimmen von Minimalen Vektoren
Oliver Zietek, Bachelor’s Thesis, TU Dortmund, 2016. - Enumeration Complexity of Multicriteria Linear Optimization
Christopher Morris, Master’s Thesis, TU Dortmund, 2015. - Algorithms for Multicriteria Network Design Problems on Graphs of Bounded Treewidth
Stephan Schlagkamp, Master’s Thesis, TU Dortmund, 2013.
staff/boekler.txt · Last modified: 2024/06/10 14:16 by 127.0.0.1