SAT Formulations for the Minimum Genus Problem

Ivo Hedtke (hedtke@uos.de)
Theoretical Computer Science, Uni Osnabrück
joint work of

Stephan Beyer1
Markus Chimani1
Ivo Hedtke1
Michal Kotrbčík2

1 Osnabrück University, Germany
2 Masaryk University, Czech Republic
Genus & Surface

S_0, S_1, S_2, \ldots

Genus 1

Genus 0

Genus 2

Genus 1

Genus 0
Graphs

Vertex $v \in V$:

Edge $e = \{u, v\} \in E$:

- finite
- undirected
- simple
- connected
- min degree 3
What are we talking about?

Embedding of a G in S_g = representation of G in S_g without edge crossings

Minimum Genus Problem: What is the smallest g such that a given graph has an embedding in S_g?

Example: K_5 on the Torus
Why?

1. Minimum Genus is a useful parameter in algorithm design: take advantage of the topological structure.

Ref: [Erickson, Fox and Nayyeri (2012). Global minimum cuts in surface embedded graphs. SODA ’12, p. 1309-1318.]

2. Mathematical community: the genus of specific graph families is of interest ever since Ringel’s celebrated determination of the genus of complete graphs.

Ref: [Ringel (1974). Map Color Theorem. Springer-Verlag]
Stop talking! It’s already done!

Ref: [Mohar. Embedding graphs in an arbitrary surface in linear time. STOC ’96, p. 392–397]
There are also other algorithms.

All of them with problems.

“There appears to be no way to fix these problems without creating algorithms which take exponential time.” Ref: [Myrvold and Kocay (2011). Errors in graph embedding algorithms. J. of Comp. and Sy. Sc., 77(2):430–438]
Roadmap

1. reduce
2. SAT
3. faster SAT
4. use it
Some Facts

- linear time planarity test

- the genus is additive over biconnected components

- the genus problem is susceptible to non-planar core reduction

- Euler's formula: \(f \equiv |E| - |V| \mod 2 \).
SAT: Idea

rotation $\pi_v = \text{cyclic order of the neighbours}$

rotation system $\pi = (\pi_v)_{v \in V}$

Example: $\pi_v = (u_1 \ u_2 \ u_3)$

facial walk: $u_1 \rightarrow u_2 \rightarrow (\pi_{u_2}(u_1) =: u_3) \rightarrow (\pi_{u_3}(u_2) =: u_4) \rightarrow ...$
An Easy SAT to Start With: ψ_{simple}

each arc is in one face:
$$\neg (c^i_a \land c^j_a)$$
each face contains an arc:
$$\forall a \in A \ c^i_a$$
the successor in π is in the same face:
$$p^v_{u,w} \rightarrow (c^i_{uv} \leftrightarrow c^i_{vw})$$
p forms a rotation system:
$$\forall u \in N(v), u \neq w \ p^v_{u,w}$$
$$\neg (p^v_{u,w} \land p^v_{u,w'})$$
$$\forall w \in N(v), w \neq u \ p^v_{u,w}$$
$$\neg (p^v_{u,w} \land p^v_{u,w'})$$
$$\forall u \in U, w \in N(v) \setminus U \ p^v_{u,w}$$
What can ψ_{simple} do for us?

Contradiction: between clauses "each face contains an arc" and "successor in the same face"

$max: 5$ faces

$f = 6$

$2 - 2g = |V| - |E| + f$

$\Rightarrow g = 1$
\(f = 5 \)

\[\begin{align*}
& (c_1^a \lor \overline{c_2^a}) \\
& \land (c_3^a \lor \overline{c_3^a}) \land (c_3^a \lor \overline{c_3^a}) \\
& \land (c_4^a \lor \overline{c_4^a}) \land (c_4^a \lor \overline{c_4^a}) \land (c_4^a \lor \overline{c_4^a}) \\
& \land (c_5^a \lor \overline{c_5^a}) \land (c_5^a \lor \overline{c_5^a}) \land (c_5^a \lor \overline{c_5^a}) \land (c_5^a \lor \overline{c_5^a})
\end{align*} \]

\(a \in f_{Il} \) \(\Rightarrow \) \(\|_{10} = 1011_{10} \)

<table>
<thead>
<tr>
<th>digit no.</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(b_a^i)</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
SAT with Binary Face Indices

before (ψ_{simple}):

- c^i_a
- # clauses for c^i_a = $f \times |A|$ = $O(f \times |A|^2)$

now (ψ_{bin}):

- b^i_a
- # clauses for b^i_a = $\log f \times |A|$ = 0

+ some other changes ...

result: speed-up $100x$
result: running times increase 100x
Faster SAT

- binary face indices
- ordering around nodes
- degree 3 nodes
- face skipping
- incremental SAT
Press Play

- comparison to existing genus computations
 - complete graphs
 - circulant graphs
- real world graphs
Comparison K_7

- brute force enumeration scheme
- + special knowledge for complete graphs
- 896 hours

our SAT
- 1 hour

Comparison $C_{11}(1,2,4)$

3 pages theoretical analysis
+ MAGMA comp. algebra system
mental activity + 85 hours

our SAT + ILP
180 hours

Non-Planar Rome Graphs

<table>
<thead>
<tr>
<th>NPC</th>
<th>E/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
</tr>
</tbody>
</table>

instances: 1 2 3 4 5 6

% success: 0 10 20 30

instances solved:

<table>
<thead>
<tr>
<th># instances</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

solved instances:

<table>
<thead>
<tr>
<th># solved instances</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>

% success:

<table>
<thead>
<tr>
<th>% success</th>
<th>0</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>
Conclusions

first implementable general-purpose minimum genus algorithms
⇒ practical algorithms for small to medium-sized graphs

adaptable to tackle other related problems:
 - existence of polyhedral embeddings
 - embeddings with given face lengths (graph-theoretic models of carbon molecules)
 - non-oriented surfaces

our implementations cannot deal with too large graphs
SAT Formulations for the Minimum Genus Problem

Ivo Hedtke (hedtke@uos.de)

Thank you!